Advanced methods for the analysis of remote sensing time series

University of Trento

PhD Programme in Information Engineering and Computer Science
Cycle: 40

The recent Earth Observation missions like (ESA Copernicus – Sentinels, ASI PRISMA and COSMO-SkyMed, and future IRIDE constellation) make available databases of long, dense and worldwide image time series. The data have complex spatio-spectro-temporal behaviors and variability, and they show irregularities and misalignments.

Candidates will be requested to develop novel methodologies within artificial intelligence framework (machine learning, deep learning, pattern recognition, etc.) for effectively and efficiently process image time series for semantic segmentation, target detection and change detection across multiannual series of data.

Besides the requirements established by the rules of the ICT school, preferential characteristics for candidates for this scholarship are:

• master degree in Electrical Engineering, Communication Engineering, Computer/Data Science, Mathematics or equivalents;

• background in artificial intelligence, image/signal processing, remote sensing, passive/active sensors.

Are you ready to join FBK international community?

We welcome motivated applicants who are passionate about research, eager to learn, and driven by curiosity to explore new ideas.

Six reasons to become a PhD student at FBK

At FBK, our PhD program is designed to develop highly specialized researchers in a unique, stimulating environment

RESEARCH
AT FBK​

A Hub of innovation and collaboration​

TOWARD PHD EXCELLENCE

FBK stands out as one of Italy’s leading research institutions

international
network

National and international
companies and universities

learning opportunities

Explore a world of learning
at FBK

Discover Trento

One of the most Italy’s
livable city

Join FBK

A truly international
community